ENVIRONMENTAL FORMATION OF ANDROGENS AND FISH MASCULINIZATION

W. Mike Howell¹ and Robert A. Angus²

¹ Department of Biology, Samford University, Birmingham, AL ² Biology Department, University of Alabama at Birmingham, Birmingham, AL

Objectives of Presentation

- Evidence of environmental androgens being formed by microbial degradation of plant sterols
- Evidence of environmental androgens masculinizing a total population of female fishes

Reasons for Referring to these Females as "Masculinized"

- They have masculine traits, e.g. gonopodium and male reproductive behavior, but remain functional females
- Many egg follicles are atretic and fecundity is reduced, but females are still capable of producing viable young
- They usually do not have ovotestes; not hermaphroditic

We Believe the Effects are Androgenic Because:

- Identical results obtainable with known androgens
- Male juvenile American eels exhibit accelerated testicular development at a time in their life history when sex determination is not normally possible
- A few masculinized females have been found which have both ovaries and testes
- Masculinized females exhibit male reproductive behavior
- Males are precociously masculinized

FACTS ABOUT TALL OIL WASTES

- Tall oil, a by-product of the kraft (sulfate) pulping of pinewood chips
- Tall oil by-products studied in 1960's and 70's by pharmaceutical companies as a commercial source for steroids
- Contains about 3% steroids which consist of about 17 compounds of which beta-sitosterol and campesterol comprise 85%
- In 1974, the U.S. produced about 800,000 tons of tall oil
- Approximately 20,000 tons of tall oil phytosterols were available as raw material for steroid drug production
- microbial removal of the aliphatic side chain of two phytosterols, betasitosterol and stigmasterol, transforms them into androstadienedione and androstenedione

Microbial Conversion of Tall Oil and Soybean Sterols into Androgens

Conversion of Tall Oil Phytosterols and Soybean Sitosterols by Mycobacterium sp. 1

	Incubation	Percent conversion to:			
Sterol source	period (days)	ADD	AED	PEO	<u>PDO</u>
Soybean	2	29	1	trace	3
	6	54	1		2
	8	38	1		1
Tall Oil	2	28	1		2
	4	46	3		3
	6	52	1		4
	8	48	1	trace	3

¹ Data from Conner et al., 1976 (ADD = androsta-1,-4-diene-3,17-dione; AED = androst-4-ene-3,17-dione; PEO = 20α -hydroxymethylpregn-4-en-3-one; PDO = 20α -hydroxymethylpregna-1,4-dien-3-one)

What Chemicals in Paper-Mill Effluent Could Cause the Masculinization?

Conner et al., 1975.(Neutrals in southern pine tall oil. J. <u>Amer. Oil Chem.</u> <u>Soc.</u>) listed the following steroids:

•Steroids	32%	3-5-campestadien-7-		
		one 0.	1	
cholesterol	trace	citrostadienol 0.	2	
campesterol	2.5	obtusifoliol 0.	1	
campestanol	0.3	cycloeucalenol 0.	.1	
sitosterol	25.1	4-stigmasten-3-one 0.	.2	
stigmastanol	1.9	4-campesten-3-one tra	ace	
cycloartenol	0.5	4,6-stigmastadien-		
24-methylene-		3-one 0.	.1	
cycloartanol	0.8	4,6-campestadien-		
24-methyleneo-		3-one tr	ace	
phenol	trace	3,5-stigmastadien-		
phenor	trace	7-one 0	.5	

What Hard Evidence Do We Have that Androgens are Responsible for Mosquitofish Masculinization?

- Steroid fractions from paper-mill effluent isolated with HPLC
- Collected peaks which showed activity with an androgen receptor (AR) developed at Laboratory for Reproductive Studies, UNC School of Medicine
- GC/MS has tentatively identified androstenedione, androstadienedione and androsterone in Fenholloway River and in microbially-transformed beta-sitosterol from soybeans
- Female mosquitofish masculinized in both river effluent and microbiallytransformed beta-sitosterol from soybeans

SUMMARY

- PLANT STEROLS CAN BE MICROBIALLY CONVERTED INTO ANDROGENS
- SETTLING PONDS CONTAINING PLANT PRODUCTS AND BACTERIA ARE "STEROID GENERATORS"
- ANDROGEN-LADEN EFFLUENTS FROM PAPER-MILLS CAN MASCULINIZE FEMALE MOSQUITOFISH (AND OTHER FISH SPECIES AS WELL)
- THE POSSIBLE EFFECTS OF ENVIRONMENTAL ANDROGENS ON HUMAN POPULATIONS SHOULD BE A TOPIC OF CONCERN CONSIDERING THE TISE IN ANDROGEN-DEPENDENT CANCERS